Physiological and proteomic responses to salt stress in chloroplasts of diploid and tetraploid black locust (Robinia pseudoacacia L.)

نویسندگان

  • Fanjuan Meng
  • Qiuxiang Luo
  • Qiuyu Wang
  • Xiuli Zhang
  • Zhenhua Qi
  • Fuling Xu
  • Xue Lei
  • Yuan Cao
  • Wah Soon Chow
  • Guangyu Sun
چکیده

Salinity is an important abiotic stressor that negatively affects plant growth. In this study, we investigated the physiological and molecular mechanisms underlying moderate and high salt tolerance in diploid (2×) and tetraploid (4×) Robinia pseudoacacia L. Our results showed greater H2O2 accumulation and higher levels of important antioxidative enzymes and non-enzymatic antioxidants in 4× plants compared with 2× plants under salt stress. In addition, 4× leaves maintained a relatively intact structure compared to 2× leaves under a corresponding condition. NaCl treatment didn't significantly affect the photosynthetic rate, stomatal conductance or leaf intercellular CO2 concentrations in 4× leaves. Moreover, proteins from control and salt treated 2× and 4× leaf chloroplast samples were extracted and separated by two-dimensional gel electrophoresis. A total of 61 spots in 2× (24) and 4× (27) leaves exhibited reproducible and significant changes under salt stress. In addition, 10 proteins overlapped between 2× and 4× plants under salt stress. These identified proteins were grouped into the following 7 functional categories: photosynthetic Calvin-Benson Cycle (26), photosynthetic electron transfer (7), regulation/defense (5), chaperone (3), energy and metabolism (12), redox homeostasis (1) and unknown function (8). This study provides important information of use in the improvement of salt tolerance in plants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physiological and Proteomic Responses of Diploid and Tetraploid Black Locust (Robinia pseudoacacia L.) Subjected to Salt Stress

Tetraploid black locust (Robinia pseudoacacia L.) is adaptable to salt stress. Here, we compared morphological, physiological, ultrastructural, and proteomic traits of leaves in tetraploid black locust and its diploid relatives under salt stress. The results showed that diploid (2×) plants suffered from greater negative effects than those of tetraploid (4×) plants. After salt treatment, plant g...

متن کامل

The effects of elevated CO 2 (0.5%) on chloroplasts in the tetraploid black locust (Robinia pseudoacacia L.)

Some ploidy plants demonstrate environmental stress tolerance. Tetraploid (4×) black locust (Robinia pseudoacacia L.) exhibits less chlorosis in response to high CO 2 than do the corresponding diploid (2×) plants of this species. We investigated the plant growth, anatomy, photosynthetic ability, chlorophyll (chl) fluorescence, and antioxidase activities in 2× and 4× black locusts cultivated und...

متن کامل

Proteomic Analysis of Etiolated Juvenile Tetraploid Robinia pseudoacacia Branches during Different Cutting Periods

The propagation of hard-branch cuttings of tetraploid Robinia pseudoacacia (black locust) is restricted by the low rooting rate; however, etiolated juvenile tetraploid black locust branches result in a significantly higher rooting rate of cuttings compared with non-etiolated juvenile tetraploid branches. To identify proteins that influence the juvenile tetraploid branch rooting process, two-dim...

متن کامل

Short‐term effect of elevated CO 2 concentration (0.5%) on mitochondria in diploid and tetraploid black locust (Robinia pseudoacacia L.)

Recent increases in atmospheric CO 2 concentration have affected the growth and physiology of plants. In this study, plants were grown with 0.5% CO 2 for 0, 3, and 6 days. The anatomy, fluorescence intensity of H2O2, respiration rate, and antioxidant activities of the mitochondria were analyzed in diploid (2×) and tetraploid (4×) black locust (Robinia pseudoacacia L.). Exposure to 0.5% CO 2 res...

متن کامل

Characterization of the Transcriptome and Gene Expression of Tetraploid Black Locust Cuttings in Response to Etiolation

Etiolation (a process of growing plants in partial or complete absence of light) promotes adventitious root formation in tetraploid black locust (Robinia pseudoacacia L.) cuttings. We investigated the mechanism underlying how etiolation treatment promotes adventitious root formation in tetraploid black locust and assessed global transcriptional changes after etiolation treatment. Solexa paired-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016